Thank you for sending your enquiry! One of our team members will contact you shortly.
Thank you for sending your booking! One of our team members will contact you shortly.
Course Outline
Understanding Code with LLMs
- Prompting strategies for code explanation and walkthroughs
- Working with unfamiliar codebases and projects
- Analyzing control flow, dependencies, and architecture
Refactoring Code for Maintainability
- Identifying code smells, dead code, and anti-patterns
- Restructuring functions and modules for clarity
- Using LLMs for suggesting naming conventions and design improvements
Improving Performance and Reliability
- Detecting inefficiencies and security risks with AI assistance
- Suggesting more efficient algorithms or libraries
- Refactoring I/O operations, database queries, and API calls
Automating Code Documentation
- Generating function/method-level comments and summaries
- Writing and updating README files from codebases
- Creating Swagger/OpenAPI docs with LLM support
Integration with Toolchains
- Using VS Code extensions and Copilot Labs for documentation
- Incorporating GPT or Claude in Git pre-commit hooks
- CI pipeline integration for documentation and linting
Working with Legacy and Multi-Language Codebases
- Reverse-engineering older or undocumented systems
- Cross-language refactoring (e.g., from Python to TypeScript)
- Case studies and pair-AI programming demos
Ethics, Quality Assurance, and Review
- Validating AI-generated changes and avoiding hallucinations
- Peer review best practices when using LLMs
- Ensuring reproducibility and compliance with coding standards
Summary and Next Steps
Requirements
- Experience with programming languages such as Python, Java, or JavaScript
- Familiarity with software architecture and code review processes
- Basic understanding of how large language models function
Audience
- Backend engineers
- DevOps teams
- Senior developers and tech leads
14 Hours