문의를 보내주셔서 감사합니다! 팀원이 곧 연락드리겠습니다.
예약을 보내주셔서 감사합니다! 저희 팀 멤버 중 한 분이 곧 연락드리겠습니다.
코스 개요
Introduction to Edge AI and TinyML
- Overview of AI at the edge
- Benefits and challenges of running AI on devices
- Use cases in robotics and automation
Fundamentals of TinyML
- Machine learning for resource-constrained systems
- Model quantization, pruning, and compression
- Supported frameworks and hardware platforms
Model Development and Conversion
- Training lightweight models using TensorFlow or PyTorch
- Converting models to TensorFlow Lite and PyTorch Mobile
- Testing and validating model accuracy
On-Device Inference Implementation
- Deploying AI models to embedded boards (Arduino, Raspberry Pi, Jetson Nano)
- Integrating inference with robotic perception and control
- Running real-time predictions and monitoring performance
Optimization for Edge Performance
- Reducing latency and energy consumption
- Hardware acceleration using NPUs and GPUs
- Benchmarking and profiling embedded inference
Edge AI Frameworks and Tools
- Working with TensorFlow Lite and Edge Impulse
- Exploring PyTorch Mobile deployment options
- Debugging and tuning embedded ML workflows
Practical Integration and Case Studies
- Designing edge AI perception systems for robots
- Integrating TinyML with ROS-based robotics architectures
- Case studies: autonomous navigation, object detection, predictive maintenance
Summary and Next Steps
요건
- An understanding of embedded systems
- Experience with Python or C++ programming
- Familiarity with basic machine learning concepts
Audience
- Embedded developers
- Robotics engineers
- System integrators working on intelligent devices
21 시간
회원 평가 (1)
Robotics 미래를 위한 AI에 대한 지식과 활용.
Ryle - PHILIPPINE MILITARY ACADEMY
코스 - Artificial Intelligence (AI) for Robotics
기계 번역됨