Smart Robotics in Manufacturing: AI for Perception, Planning, and Control 교육 과정
Smart Robotics is the integration of artificial intelligence into robotic systems for improved perception, decision-making, and autonomous control.
This instructor-led, live training (online or onsite) is aimed at advanced-level robotics engineers, systems integrators, and automation leads who wish to implement AI-driven perception, planning, and control in smart manufacturing environments.
By the end of this training, participants will be able to:
- Understand and apply AI techniques for robotic perception and sensor fusion.
- Develop motion planning algorithms for collaborative and industrial robots.
- Deploy learning-based control strategies for real-time decision making.
- Integrate intelligent robotic systems into smart factory workflows.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to Smart Robotics and AI Integration
- Overview of robotics in Industry 4.0
- AI’s role in perception, planning, and control
- Software and simulation environments
Perception Systems and Sensor Fusion
- Computer vision for robotics (2D/3D cameras, LiDAR)
- Sensor calibration and fusion techniques
- Object detection and environment mapping
Deep Learning for Perception
- Neural networks for visual recognition
- Using TensorFlow or PyTorch with robotic data
- Training perception models for object tracking
Motion Planning and Path Optimization
- Sampling-based and optimization-based planning
- Working with MoveIt for motion planning
- Collision avoidance and dynamic re-planning
Learning-Based Control Strategies
- Reinforcement learning for robotic control
- Integrating AI into low-level control loops
- Simulation with OpenAI Gym and Gazebo
Collaborative Robots (Cobots) in Smart Manufacturing
- Safety standards and human-robot collaboration
- Programming and integrating cobots with AI
- Adaptive behaviors and real-time responsiveness
System Integration and Deployment
- Interfacing with industrial controllers (PLC, SCADA)
- Edge AI deployment for real-time robotics
- Data logging, monitoring, and troubleshooting
Summary and Next Steps
Requirements
- An understanding of robotic systems and kinematics
- Experience with Python programming
- Familiarity with AI or machine learning concepts
Audience
- Robotics engineers
- Systems integrators
- Automation leads
Open Training Courses require 5+ participants.
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control 교육 과정 - Booking
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control 교육 과정 - Enquiry
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control - Consultancy Enquiry
Consultancy Enquiry
Upcoming Courses
Related Courses
AI-Powered Predictive Maintenance for Industrial Systems
14 HoursAI-powered predictive maintenance applies machine learning and data analytics to forecast equipment failures and optimize maintenance schedules. It transforms reactive maintenance models into proactive strategies, enabling better uptime, cost reduction, and asset longevity.
This instructor-led, live training (online or onsite) is aimed at intermediate-level professionals who wish to implement AI-driven predictive maintenance solutions in industrial environments.
By the end of this training, participants will be able to:
- Understand how predictive maintenance differs from reactive and preventive maintenance strategies.
- Collect and structure machine data for AI-powered analysis.
- Apply machine learning models to detect anomalies and predict failures.
- Implement end-to-end workflows from sensor data to actionable insights.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises and case studies.
- Live demonstration and practical data workflows.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Process Optimization in Manufacturing Operations
21 HoursAI for Process Optimization is the application of machine learning and data analytics to enhance efficiency, quality, and throughput in manufacturing operations.
This instructor-led, live training (online or onsite) is aimed at intermediate-level manufacturing professionals who wish to apply AI techniques to streamline operations, reduce downtime, and support continuous improvement initiatives.
By the end of this training, participants will be able to:
- Understand AI concepts relevant to manufacturing optimization.
- Collect and prepare production data for analysis.
- Apply machine learning models to identify bottlenecks and predict failures.
- Visualize and interpret results to support data-driven decisions.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Quality Control and Assurance in Production Lines
21 HoursAI for Quality Control is the use of computer vision and machine learning techniques to identify defects, anomalies, and deviations in production processes.
This instructor-led, live training (online or onsite) is aimed at beginner-level to intermediate-level quality professionals who wish to apply AI tools to automate inspections and improve product quality in manufacturing environments.
By the end of this training, participants will be able to:
- Understand how AI is applied in industrial quality control.
- Collect and label image or sensor data from production lines.
- Use machine learning and computer vision to detect defects.
- Develop simple AI models for anomaly detection and yield forecasting.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Supply Chain and Manufacturing Logistics
21 HoursAI in Supply Chain and Manufacturing Logistics is the application of predictive analytics, machine learning, and automation to optimize inventory, routing, and demand forecasting.
This instructor-led, live training (online or onsite) is aimed at intermediate-level supply chain professionals who wish to apply AI-driven tools to enhance logistics performance, forecast demand accurately, and automate warehouse and transport operations.
By the end of this training, participants will be able to:
- Understand how AI is applied across logistics and supply chain activities.
- Use machine learning models for demand forecasting and inventory control.
- Analyze routes and optimize transport using AI-based techniques.
- Automate decision-making in warehouses and fulfillment processes.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to AI in Smart Factories and Industrial Automation
14 HoursAI in Smart Factories is the application of artificial intelligence to automate, monitor, and optimize industrial operations in real time.
This instructor-led, live training (online or onsite) is aimed at beginner-level decision-makers and technical leads who wish to gain a strategic and practical introduction to how AI can be leveraged in smart factory environments.
By the end of this training, participants will be able to:
- Understand the core principles of AI and machine learning.
- Identify key AI use cases in manufacturing and automation.
- Explore how AI supports predictive maintenance, quality control, and process optimization.
- Evaluate the steps involved in launching AI-driven initiatives.
Format of the Course
- Interactive lecture and discussion.
- Real-world case studies and group exercises.
- Strategic frameworks and implementation guidance.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Hands-on Workshop: Implementing AI Use Cases with Industrial Data
21 HoursAI Use Case Implementation is a hands-on, project-driven approach to applying machine learning, computer vision, and data analytics to solve real-world industrial challenges using actual or simulated datasets.
This instructor-led, live training (online or onsite) is aimed at intermediate-level cross-functional teams who wish to collaboratively implement AI use cases aligned with their operational goals and gain experience working with industrial data pipelines.
By the end of this training, participants will be able to:
- Select and scope practical AI use cases from operations, quality, or maintenance.
- Work collaboratively across roles to develop machine learning solutions.
- Handle, clean, and analyze diverse industrial datasets.
- Present a working prototype of an AI-enabled solution based on a selected use case.
Format of the Course
- Interactive lecture and discussion.
- Group-based exercises and project work.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Developing Intelligent Bots with Azure
14 HoursAzure Bot Service는 Microsoft Bot Framework 및 Azure 기능을 결합하여 지능형 로봇을 신속하게 개발할 수 있도록합니다.
이 강사가 진행하는 실제 교육에서 참가자는 Microsoft Azure 사용하여 지능형 봇을 쉽게 만드는 방법을 배웁니다.
이 훈련이 끝나면 참가자는 다음을 할 수 있습니다.
- 지능형 봇의 기본 사항을 익힙니다.
- 클라우드 애플리케이션을 사용하여 지능형 봇을 만드는 방법을 학습합니다.
- Microsoft Bot Framework, Bot Builder SDK 및 Azure Bot Service를 사용하는 방법을 이해합니다.
- 봇 패턴을 사용하여 봇을 설계하는 방법을 이해합니다.
- Microsoft Azure을 사용하여 첫 번째 지능형 봇을 개발합니다.
청중
- 개발자
- 취미자
- 엔지니어
- IT 전문가
과정 형식
- 강의와 토론, 연습, 그리고 실습 위주의 학습
Developing a Bot
14 Hours봇 또는 챗봇은 다양한 메시징 플랫폼에서 사용자 상호 작용을 자동화하고 사용자가 다른 사람과 대화할 필요 없이 작업을 더 빠르게 완료하는 데 사용되는 컴퓨터 도우미와 같습니다.
강사가 진행하는 이 실시간 교육에서 참가자는 봇 개발 도구 및 프레임워크를 사용하여 샘플 챗봇을 생성하는 과정을 단계별로 진행하면서 봇 개발을 시작하는 방법을 배웁니다.
이 교육이 끝나면 참가자는 다음을 수행할 수 있습니다.
- 봇의 다양한 용도와 애플리케이션 이해
- 봇 개발의 전체 프로세스 이해
- 봇 구축에 사용되는 다양한 도구와 플랫폼을 살펴보세요.
- Facebook 메신저용 샘플 챗봇 구축
- Microsoft Bot Framework를 사용하여 샘플 챗봇 구축
청중
- 자신만의 봇을 만드는 데 관심이 있는 개발자
코스의 형식
- 파트 강의, 파트 토론, 연습 및 고강도 실습
Building Digital Twins with AI and Real-Time Data
21 HoursDigital Twins are virtual replicas of physical systems enhanced by real-time data and AI-driven intelligence.
This instructor-led, live training (online or onsite) is aimed at intermediate-level professionals who wish to build, deploy, and optimize digital twin models using real-time data and AI-based insights.
By the end of this training, participants will be able to:
- Understand the architecture and components of digital twins.
- Use simulation tools to model complex systems and environments.
- Integrate real-time data streams into virtual models.
- Apply AI techniques for predictive behavior and anomaly detection.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI for Manufacturing: Real-Time Intelligence at the Device Level
21 HoursEdge AI is the deployment of artificial intelligence models directly on devices and machines at the edge of the network, enabling real-time decision-making with minimal latency.
This instructor-led, live training (online or onsite) is aimed at advanced-level embedded and IoT professionals who wish to deploy AI-powered logic and control systems in manufacturing environments where speed, reliability, and offline operation are critical.
By the end of this training, participants will be able to:
- Understand the architecture and benefits of edge AI systems.
- Build and optimize AI models for deployment on embedded devices.
- Use tools like TensorFlow Lite and OpenVINO for low-latency inference.
- Integrate edge intelligence with sensors, actuators, and industrial protocols.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Industrial Computer Vision with AI: Defect Detection and Visual Inspection
14 HoursIndustrial computer vision with AI is transforming how manufacturers and QA teams detect surface defects, verify part conformity, and automate visual inspection processes.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level QA teams, automation engineers, and developers who wish to design and implement computer vision systems for defect detection and inspection using AI techniques.
By the end of this training, participants will be able to:
- Understand the architecture and components of industrial vision systems.
- Build AI models for visual defect detection using deep learning.
- Integrate real-time inspection pipelines with industrial cameras and devices.
- Deploy and optimize AI-powered inspection systems for production environments.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Artificial Intelligence (AI) for Mechatronics
21 Hours대한민국에서 진행되는 이 강사 주도 라이브 교육(온라인 또는 현장)은 메카트로닉 시스템에 인공 지능을 적용하는 방법을 배우려는 엔지니어를 대상으로 합니다.
이 교육이 끝나면 참가자는 다음을 수행할 수 있습니다.
- 인공 지능, 기계 학습, 전산 지능에 대한 개요를 살펴보세요.
- 신경망의 개념과 다양한 학습 방법을 이해합니다.
- 실제 문제에 대해 인공지능 접근 방식을 효과적으로 선택하세요.
- 메카트로닉 엔지니어링에 AI 애플리케이션을 구현합니다.
Physical AI for Robotics and Automation
21 Hours대한민국에서 강사가 진행하는 이 실시간 교육(온라인 또는 현장)은 자동화 및 그 외 분야에서 지능형 로봇 시스템을 설계, 프로그래밍, 배포하는 기술을 향상시키고자 하는 중급 수준의 참가자를 대상으로 합니다.
이 교육을 마치면 참가자는 다음을 수행할 수 있습니다.
- Physical AI의 원리와 로봇공학 및 자동화 분야의 응용 분야를 이해합니다.
- 역동적인 환경에 맞춰 지능형 로봇 시스템을 설계하고 프로그래밍합니다.
- 로봇의 자율적 의사결정을 위한 AI 모델을 구현합니다.
- 로봇 테스트와 최적화를 위해 시뮬레이션 도구를 활용합니다.
- 센서 융합, 실시간 처리, 에너지 효율성 등의 과제를 해결합니다.
Smart Robots for Developers
84 Hours스마트 로봇은 환경과 경험으로부터 학습하고 해당 지식을 기반으로 역량을 구축할 수 있는 Artificial Intelligence (AI) 시스템입니다. Smart Robots 인간과 협력하여 인간과 함께 일하고 인간의 행동으로부터 학습할 수 있습니다. 더욱이, 이들은 수동 노동뿐만 아니라 인지 작업도 수행할 수 있는 능력을 갖추고 있습니다. 물리적 로봇 외에도 Smart Robots 순전히 소프트웨어 기반일 수도 있으며, 움직이는 부분이 없고 세상과 물리적으로 상호 작용하지 않는 소프트웨어 애플리케이션으로 컴퓨터에 상주할 수도 있습니다.
강사가 진행하는 이 실시간 교육에서 참가자는 다양한 유형의 기계Smart Robots를 프로그래밍하기 위한 다양한 기술, 프레임워크 및 기법을 배우고 이러한 지식을 적용하여 자신의 스마트 로봇 프로젝트를 완료합니다.
이 과정은 4개 섹션으로 나뉘며, 각 섹션은 3일간의 강의, 토론, 라이브 랩 환경에서의 실습 로봇 개발로 구성됩니다. 각 섹션은 참가자가 습득한 지식을 연습하고 입증할 수 있는 실습 프로젝트로 마무리됩니다.
이 과정의 대상 하드웨어는 시뮬레이션 소프트웨어를 통해 3D로 시뮬레이션됩니다. 로봇 프로그래밍에는 ROS (로봇 운영 체제) 오픈 소스 프레임워크, C++ 및 Python이 사용됩니다.
이 교육을 마치면 참가자는 다음을 수행할 수 있습니다.
- 로봇 기술에 사용되는 핵심 개념을 이해하세요
- 로봇 시스템에서 소프트웨어와 하드웨어 간의 상호 작용을 이해하고 관리합니다.
- Smart Robots을 뒷받침하는 소프트웨어 구성 요소를 이해하고 구현합니다.
- 음성을 통해 인간을 보고, 감지하고, 처리하고, 파악하고, 탐색하고, 상호 작용할 수 있는 시뮬레이션된 기계식 스마트 로봇을 제작하고 작동시킵니다.
- Deep Learning을 통해 복잡한 작업을 수행하는 스마트 로봇의 능력 확장
- 현실적인 시나리오에서 스마트 로봇 테스트 및 문제 해결
청중
- 개발자
- 엔지니어
과정 형식
- 일부 강의, 일부 토론, 연습 및 집중적인 실습
메모
- 이 과정의 어떤 부분이든(프로그래밍 언어, 로봇 모델 등) 맞춤화를 원하시면 저희에게 연락해 주시기 바랍니다.