DeepMind Lab 교육 과정
DeepMind Lab은 3D 게임과 같은 시뮬레이션 환경을 활용해 학습 에이전트를 훈련하고 강화학습 알고리즘을 실행하며 머신러닝(ML) 시스템을 개발하는 에이전트 기반 인공지능(AI) 연구 플랫폼이다.
이 강사가 진행하는 실시간 교육(온라인 또는 현장)은 DeepMind Lab 플랫폼을 설치, 설정, 사용자 정의 및 사용하여 일반 인공 지능 및 기계 학습 시스템을 개발하려는 연구원 및 개발자를 대상으로 합니다.
이 교육이 끝나면 참가자는 다음을 수행할 수 있습니다.
- 학습 및 훈련 요구 사항에 적합한 환경을 구축하고 실행하려면 DeepMind Lab을 사용자 정의하세요.
- DeepMind Lab의 3D 시뮬레이션 환경을 사용하여 1인칭 관점에서 학습 에이전트를 훈련하세요.
- 3D 게임과 같은 세계에서 인텔리전스를 개발하기 위해 에이전트 평가를 촉진합니다.
코스의 형식
- 대화형 강의 및 토론.
- 많은 연습과 연습.
- 라이브 랩 환경에서 직접 구현합니다.
코스 맞춤화 옵션
- 이 과정에 대한 맞춤형 교육을 요청하려면 당사에 연락하여 예약하시기 바랍니다.
Course Outline
소개
DeepMind Lab 기능 및 아키텍처 개요
DeepMind Lab의 탐색, 메모리 및 탐색 이해
빌드 및 실행 DeepMind Lab
커스터마이징 DeepMind Lab
프로그래밍 방식의 레벨 생성 인터페이스 사용
Python 종속성 탐색
Linux에서 시작하기
3D 시뮬레이션 환경 사용
관찰과 행동에 대해 배우기
인간 입력 제어 사용
학습 에이전트 구현 및 교육
업스트림 소스 작업
외부 종속성, 필수 구성 요소 및 이식 참고 사항 작업
DeepMind Lab 실제 영향 및 혁신 탐색
문제 해결
요약 및 결론
Requirements
- Python 또는 기타 프로그래밍 언어 사용 경험
- 인공지능과 머신러닝 개념에 대한 지식
청중
- 연구원
- 개발자
Open Training Courses require 5+ participants.
DeepMind Lab 교육 과정 - Booking
DeepMind Lab 교육 과정 - Enquiry
DeepMind Lab - Consultancy Enquiry
Consultancy Enquiry
Upcoming Courses
Related Courses
Advanced Stable Diffusion: Deep Learning for Text-to-Image Generation
21 Hours대한민국에서 강사가 진행하는 이 실시간 교육(온라인 또는 현장)은 텍스트-이미지 생성을 위한 딥 러닝에 대한 지식과 기술을 확장하고자 하는 중급에서 고급 수준의 데이터 과학자, 머신 러닝 엔지니어, 딥 러닝 연구자 및 컴퓨터 비전 전문가를 대상으로 합니다.
이 교육을 마치면 참가자는 다음을 수행할 수 있습니다.
- 텍스트-이미지 생성을 위한 고급 딥 러닝 아키텍처와 기술을 이해합니다.
- 고품질 이미지 합성을 위해 복잡한 모델과 최적화를 구현합니다.
- 대규모 데이터 세트와 복잡한 모델에 대한 성능과 확장성을 최적화합니다.
- 더 나은 모델 성능과 일반화를 위해 하이퍼파라미터를 조정합니다.
- Stable Diffusion을 다른 딥러닝 프레임워크 및 도구와 통합
AlphaFold
7 Hours대한민국에서 강사가 진행하는 이 실시간 교육(온라인 또는 현장)은 AlphaFold의 작동 방식을 이해하고 실험 연구의 가이드로 AlphaFold 모델을 사용하려는 생물학자를 대상으로 합니다.
이 교육을 마치면 참가자는 다음을 수행할 수 있습니다.
- AlphaFold의 기본 원리를 이해하세요.
- AlphaFold의 작동 방식을 알아보세요.
- AlphaFold 예측 및 결과를 해석하는 방법을 알아보세요.
Applied AI from Scratch
28 HoursAI와 그 응용을 소개하는 4일간의 강좌입니다. 이 과정을 마친 후 AI 프로젝트를 수행할 수 있는 하루를 추가로 가질 수 있는 옵션이 있습니다.
Deep Learning for Vision with Caffe
21 HoursCaffe 는 표현, 속도 및 모듈성을 염두에 둔 심층적 인 학습 프레임 워크입니다.
본 과목은 MNIST를 이용한 이미지 인식을위한 CEPE의 심도있는 학습 틀로서의 Caffe 의 응용을 탐구한다.
청중
이 과정은 Caffe 를 프레임 워크로 사용하는 데 관심이있는 Deep Learning 연구원 및 엔지니어에게 적합합니다.
이 과정을 마치면 대표단은 다음을 수행 할 수 있습니다.
- Caffe 의 구조와 전개 메커니즘 이해
- 설치 / 생산 환경 / 아키텍처 작업 및 구성 수행
- 코드 품질 평가, 디버깅 수행, 모니터링
- 교육 모델, 레이어 및 로깅 구현과 같은 고급 제작 구현
Deep Learning Neural Networks with Chainer
14 Hours대한민국에서 강사가 진행하는 이 실시간 교육(온라인 또는 현장)은 Chainer을 사용하여 Python에서 신경망을 구축하고 교육하고 동시에 코드를 쉽게 디버깅하려는 연구원 및 개발자를 대상으로 합니다.
이 교육을 마치면 참가자는 다음을 수행할 수 있습니다.
- 신경망 모델 개발을 시작하는 데 필요한 개발 환경을 설정합니다.
- 이해하기 쉬운 소스 코드를 사용하여 신경망 모델을 정의하고 구현합니다.
- 고성능을 위해 GPU을 활용하면서 딥 러닝 학습 모델을 최적화하기 위해 예제를 실행하고 기존 알고리즘을 수정합니다.
Using Computer Network ToolKit (CNTK)
28 HoursComputer Network ToolKit (CNTK)은 Microsoft의 오픈 소스, 다중 머신, 다중GPU, 음성, 텍스트 및 이미지를 위한 고효율 RNN 학습 머신 러닝 프레임워크입니다.
청중
본 과정은 프로젝트에서 CNTK을 활용하고자 하는 엔지니어와 건축가를 대상으로 합니다.
Computer Vision with Google Colab and TensorFlow
21 Hours대한민국에서 강사가 진행하는 이 실시간 교육(온라인 또는 현장)은 컴퓨터 비전에 대한 이해를 심화하고 Google Colab을 사용하여 정교한 비전 모델을 개발하기 위한 TensorFlow의 역량을 알아보고자 하는 고급 전문가를 대상으로 합니다.
이 교육을 마치면 참가자는 다음을 수행할 수 있습니다.
- TensorFlow를 사용하여 합성곱 신경망(CNN)을 구축하고 학습합니다.
- 확장 가능하고 효율적인 클라우드 기반 모델 개발을 위해 Google Colab을 활용하세요.
- 컴퓨터 비전 작업을 위한 이미지 전처리 기술을 구현합니다.
- 실제 응용 프로그램을 위한 컴퓨터 비전 모델을 배포합니다.
- CNN 모델의 성능을 향상하기 위해 전이 학습을 사용합니다.
- 이미지 분류 모델의 결과를 시각화하고 해석합니다.
Deep Learning with TensorFlow in Google Colab
14 Hours대한민국에서 진행되는 이 실시간 교육(온라인 또는 현장)은 Google Colab 환경을 사용하여 딥 러닝 기술을 이해하고 적용하려는 중급 수준의 데이터 과학자 및 개발자를 대상으로 합니다.
이 교육이 끝나면 참가자는 다음을 수행할 수 있습니다.
- 딥 러닝 프로젝트를 위한 Google Colab을 설정하고 탐색해 보세요.
- 신경망의 기본을 이해합니다.
- TensorFlow를 사용하여 딥러닝 모델을 구현합니다.
- 딥 러닝 모델을 훈련하고 평가합니다.
- 딥러닝을 위해 TensorFlow의 고급 기능을 활용하세요.
Deep Learning for NLP (Natural Language Processing)
28 Hours강사가 진행하는 이 대한민국 실시간 교육에서 참가자는 일련의 사진을 처리하고 캡션을 생성하는 애플리케이션을 만들면서 NLP용 Python 라이브러리를 사용하는 방법을 배웁니다.
이 교육이 끝나면 참가자는 다음을 수행할 수 있습니다.
- Python 라이브러리를 사용하여 NLP용 DL을 설계하고 코딩합니다.
- 상당히 많은 양의 사진 모음을 읽고 키워드를 생성하는 Python 코드를 만듭니다.
- 감지된 키워드에서 캡션을 생성하는 Python 코드를 만듭니다.
Edge AI with TensorFlow Lite
14 Hours대한민국에서 진행되는 이 실시간 교육(온라인 또는 현장)은 TensorFlow Lite for Edge AI 애플리케이션을 활용하려는 중급 개발자, 데이터 과학자 및 AI 실무자를 대상으로 합니다.
이 교육이 끝나면 참가자는 다음을 수행할 수 있습니다.
- TensorFlow Lite의 기본 사항과 Edge AI에서의 역할을 이해합니다.
- TensorFlow Lite를 사용하여 AI 모델을 개발하고 최적화합니다.
- 다양한 에지 장치에 TensorFlow Lite 모델을 배포합니다.
- 모델 변환 및 최적화를 위한 도구와 기술을 활용합니다.
- TensorFlow Lite를 사용하여 실용적인 Edge AI 애플리케이션을 구현합니다.
Accelerating Deep Learning with FPGA and OpenVINO
35 Hours대한민국에서 강사가 진행하는 이 실시간 교육(온라인 또는 현장)은 실시간 머신 러닝 애플리케이션을 가속화하고 대규모로 배포하려는 데이터 과학자를 대상으로 합니다.
이 교육을 마치면 참가자는 다음을 수행할 수 있습니다.
- OpenVINO 툴킷을 설치하세요.
- FPGA를 사용하여 컴퓨터 비전 애플리케이션을 가속화합니다.
- FPGA에서 다양한 CNN 레이어를 실행합니다.
- Kubernetes 클러스터의 여러 노드에 걸쳐 애플리케이션을 확장합니다.
Distributed Deep Learning with Horovod
7 Hours대한민국에서 강사가 진행하는 이 실시간 교육(온라인 또는 현장)은 Horovod를 사용하여 분산 딥 러닝 교육을 실행하고 이를 여러 GPU에 걸쳐 병렬로 실행하도록 확장하려는 개발자 또는 데이터 과학자를 대상으로 합니다.
이 교육을 마치면 참가자는 다음을 수행할 수 있습니다.
- 딥 러닝 훈련을 시작하기 위해 필요한 개발 환경을 설정합니다.
- TensorFlow, Keras, PyTorch 및 Apache MXNet을 사용하여 모델을 학습하기 위해 Horovod를 설치하고 구성합니다.
- Horovod를 사용하여 여러 GPU에서 실행되도록 딥 러닝 학습 훈련을 확장합니다.
Deep Learning with Keras
21 Hours대한민국에서 강사가 진행하는 이 실시간 교육(온라인 또는 현장)은 이미지 인식 응용 프로그램에 딥 러닝 모델을 적용하려는 기술자를 대상으로 합니다.
이 교육을 마치면 참가자는 다음을 수행할 수 있습니다.
- Keras을 설치하고 구성합니다.
- 딥 러닝 모델을 빠르게 프로토타입으로 제작합니다.
- 합성 신경망을 구현합니다.
- 반복적인 네트워크를 구현합니다.
- CPU와 GPU 모두에서 딥러닝 모델을 실행합니다.
Introduction to Stable Diffusion for Text-to-Image Generation
21 Hours이 강사 주도의 실시간 교육(온라인 또는 현장)은 다양한 사용 사례에 대해 고품질 이미지를 생성하기 위해 Stable Diffusion을 활용하고자 하는 데이터 과학자, 머신 러닝 엔지니어 및 컴퓨터 비전 연구자를 대상으로 합니다.
이 교육을 마치면 참가자는 다음을 수행할 수 있습니다.
- Stable Diffusion의 원리와 이미지 생성에 있어서 이것이 어떻게 작동하는지 이해하세요.
- Stable Diffusion개의 이미지 생성 작업을 위한 모델을 구축하고 학습합니다.
- Stable Diffusion을 인페인팅, 아웃페인팅, 이미지 간 변환과 같은 다양한 이미지 생성 시나리오에 적용합니다.
- Stable Diffusion 모델의 성능과 안정성을 최적화합니다.
Tensorflow Lite for Microcontrollers
21 Hours대한민국에서 진행되는 이 실시간 교육(온라인 또는 현장)은 매우 작은 임베디드 장치에서 기계 학습 모델을 작성, 로드 및 실행하려는 엔지니어를 대상으로 합니다.
이 교육이 끝나면 참가자는 다음을 수행할 수 있습니다.
- TensorFlow Lite을 설치합니다.
- 기계 학습 모델을 임베디드 장치에 로드하여 음성 감지, 이미지 분류 등을 수행할 수 있습니다.
- 네트워크 연결에 의존하지 않고 하드웨어 장치에 AI를 추가합니다.